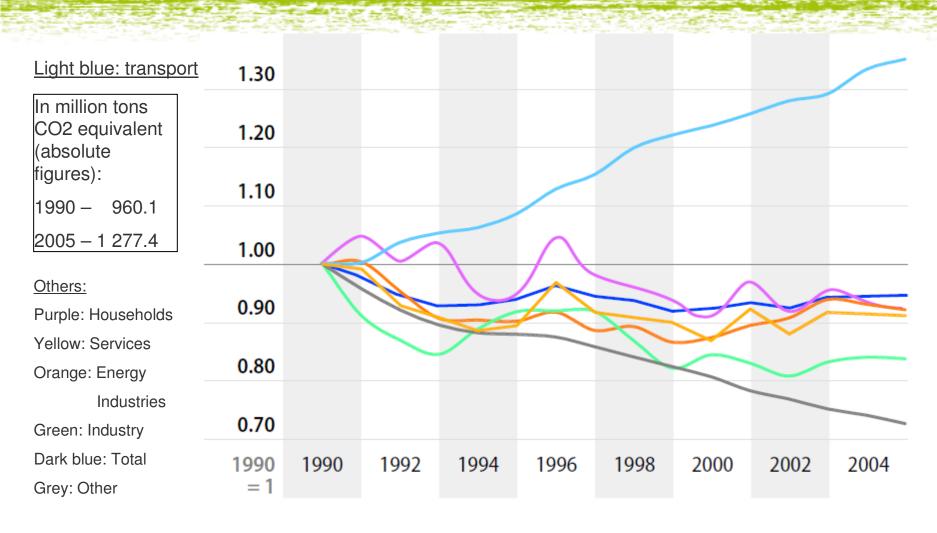


In-Time – Intelligent and efficient travel management for European cities

Kick-Off, Vienna 16/17 April 2009

Content



- Introduction
- The Project
- Concept of In-Time
- Key Elements
- Expected Impacts
- Work packages

GHG-emissions EU-27 by sector – increase/decrease since 1990

Martin Böhm

Source: EEA, December 2007; in: Green Paper Emissions, EU Energy and Transport in Figures, Statistical Poketbook 2007/2008, p.186

Green Paper

Green Paper – Towards a new culture for Urban Mobility [SEC(2007) 1209]:

- Increased traffic in Europe's cities has resulted
 - In chronic congestion (delays, pollution)
 - In a loss of nearly 100 billion Euros per year (1% of the EU's GDP) to the European economy as a result of this phenomenon.
- Urban traffic is responsible for
 - o 40% of CO₂ emissions and
 - o 70% of emissions of other pollutants arising from road transport

The main policy objectives for transport and travel are to become:

- cleaner,
- more efficient, including energy efficiency
- safer and more secure.

How to address Urban Mobility

Chronic congestions on urban road artery network

Strategies to improve mobility

- Enhancement of the arteries to the third dimension
- Intelligent Transport System (ITS)
 - Improved Urban Traffic Management
 - Co-modality (change of travel behaviour)

Change of Travel Behaviour

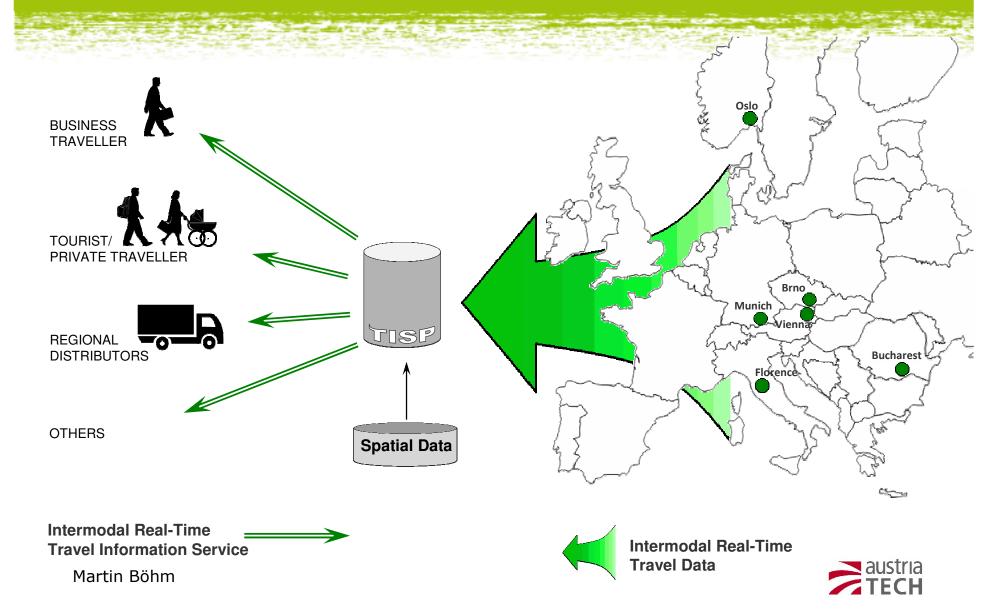
Can be achieved by

- Comfort (short transit, improved waiting time...)
- Reliability (up to date information about delays...)
- pan-European multimodal Real-Time Travel Information

In-Time – Frame Data

- In-Time Intelligent and Efficient Travel Management for European Cities
- Pilot Typ B for CIP-ICT PSP-2008-2
- Project with 22 Partners, co-ordinated by AustriaTech
- Budget of project: 4,58 Mio EURO, of which 2,29 Mio EURO are funded by the EU
- Kick-off: 1st April 2009
- Duration of project: 3 years

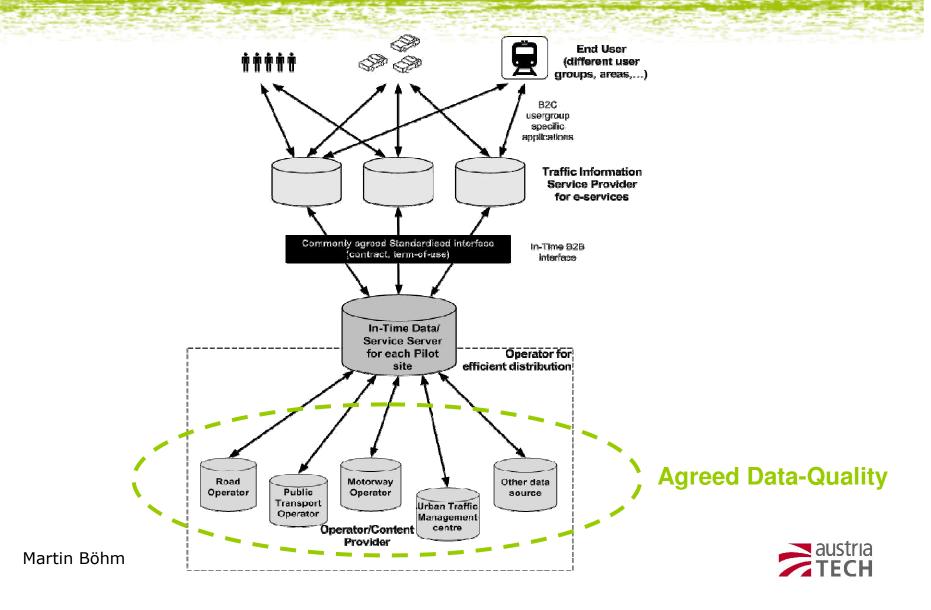
Basic Idea of In-Time


Implementation of a pan-European multimodal Real-Time Travel Information System through the

- implementation of a standardised harmonised interface between operators and service providers,
- aiming at the reduction of the energy consumption of the single traveller by changing his travel behaviour.

In-Time Concept

In-Time Information Delivery



Concept of RDSS (Regional Data-/ Service-Server)

B2B Services

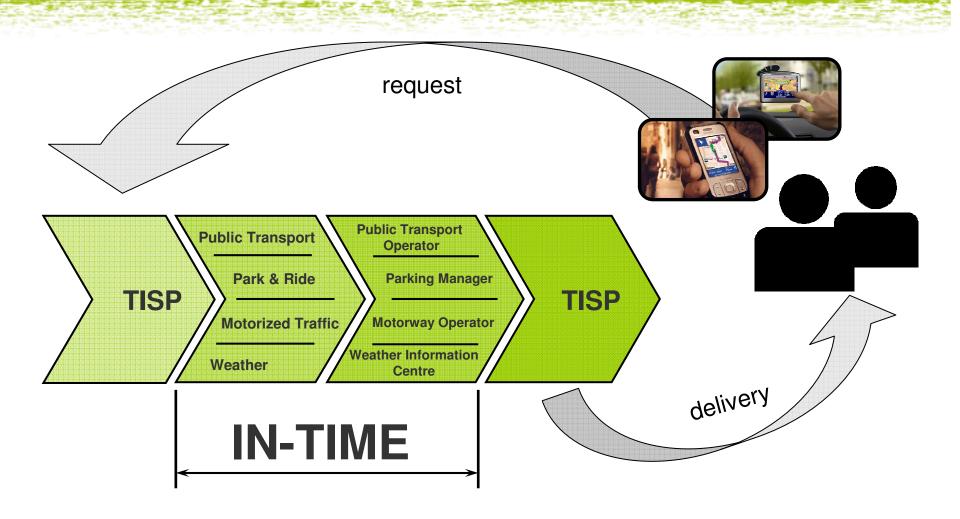
- The ownership of data is with the regional infrastructure operator.
- Transport Information Service Provider (TISPs) will be the users of B2B Services, offering their customers interoperable und multimodal RTTI Services (individual customised).
- Clear definition of data/services to be exchanged.
- Elaboration of "Terms of Use" (incl. cost model)

B2C Services

B2C Services can be divided into two major groups:

- e-services will influence the on-trip travel behaviour by optimising journeys taking the energy consumption into account. The community will be the users of mobile devices or a navigational device.
- Internet based pre-trip information can influence travel behaviour.

Traffic Management


Operating Traffic Management for reducing the amount of energy needed:

- reducing traffic congestions in all modes (efficient and intermodal operating traffic management solution for more fluent traffic)
- enabling intermodal real-time on- and pre-trip information, to result in intelligent decisions of the traveller and lower energy consumption
- lowering energy consumption drastically by the introduction of modern technologies like the adoption of LED technology for signal heads

Information Delivery Chain

Expected Impacts on Travel Behaviour

- modal shift away from individual traffic: around 3%, as private users will be enabled to compare transport modes and make a choice.
- improved customer acceptance of PT operation.
- reduction of road traffic jams
- improved safety
- higher mobility of people and goods across different transport modes through the provision of accessible and reliable information services.

Expected Impacts on the Environment

- reducing emissions through an improved traffic management system:
 - pollutants and CO₂ Emissions,
 - o particle emissions,
 - o noise, etc.
- lowering energy consumption by:
 - o optimising traffic control (Eco-flow)
 - enhancing the product life-cycle
 - o reducing power consumption by using LED technologies

Partners

Pilot Cities:

- All traffic operators (PT und individual traffic) are committed to the In-Time concept.
- The intention to run the platform beyond the project's lifetime must be clearly demonstrated.

Service Providers:

- Have a clientele already
- Provision of the same kind of services throughout Europe

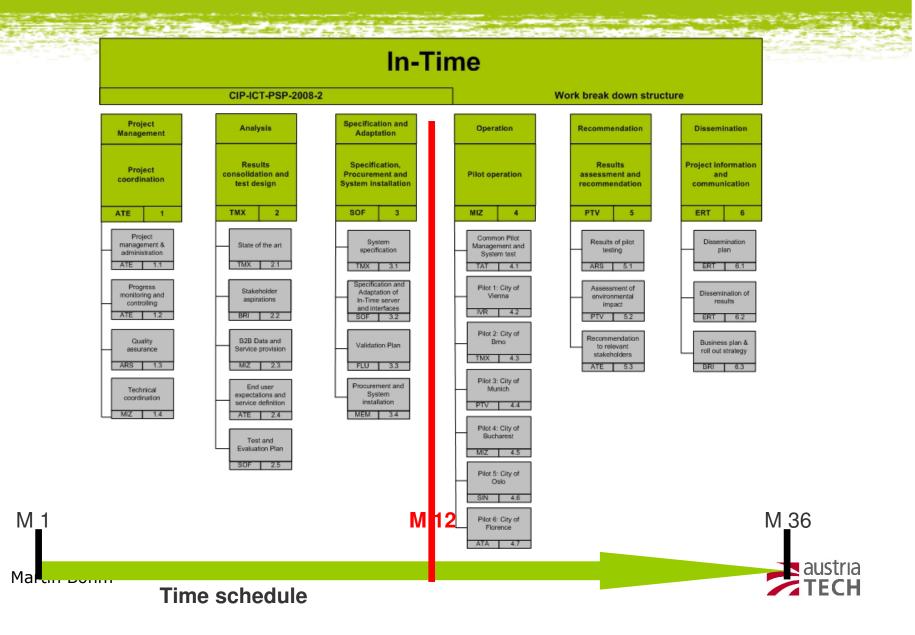
Dissemination:

- Partners ensure access to European traffic operators
- Experience in organizing workshops und seminars

Partners

- Vienna
- Florence
- **Bucharest**
- Brno
- Munich
- Oslo
- Service Provider
- Validation
- Dissemination

Universitatea "POLITEHNICA" din București Centrul de Cercetare, Proiectare, Service și Consulting Domeniul Telecomenzi și Electronică în Transpo



Work Packages

WP 1 – Project Management

- Project management & administration
- Progress monitoring & controlling
- Quality assurance
 - o within the project
 - Review-management for deliverables
 - o risk management
- Technical coordination
 - Very important until system installation

WP 2 – Analysis

- State of the art
 - Consolidation of results with special focus on In-Time (eMotion, Feedmap, Wisetrip...)
 - o What is already existing within the pilot-cities?
- Stakeholder aspirations
 - Technically and Commercially
 - Legally with a special focus on EC-directives (e.g. Inspire-directive 2007/2/EC)
 - o Policy issues
- B2B Data and Service provision
 - Definition of data/service quality and content for B2B
- Service definition
 - Definition of User-Groups
 - Basis for business plan
 - End-user services

WP 3 – Specification and Adaptation

- System specification
 - Architecture
- Specification and adaptation of In-Time server and interfaces
 - Technical, commercial and legal description of In-Time server and interfaces
 - Basis for potential tender procedure
- Validation Plan
 - Definition of system tests (test criteria)
- Procurement and system installation, development and adaptation of end-user services
 - Consolidate additional technical details
 - Conclude procurement process with optimal solution
 - Including components testing
- O Development and adaptation of end-user services

WP 4 – Operation

Common Pilot Management and System Test

- Planning the pilots regarding non-technical aspects
- Planning the pilots regarding technical aspects
- Coordination of the common pilot aspects
- Management of end-user survey

Single pilots

- o Vienna
- Brno
- Munich
- Bucharest
- Oslo
- o Florence

WP 5 – Recommendation

- Results of the pilot testing, assessment of the user surveys
 - User acceptance (business and end-user)
 - Willingness to pay
 - Change of travel behaviour
- Assessment of environmental impact
 - Pollution, CO2, noise, particles
 - Safety impact: reduction of congestion
 - Impact on ressource management (fuel, road)
 - Traffic management
- Recommendation to relevant stakeholders and contribution to standardisation of interfaces
 - policy
 - o Value chain
 - standardisation

- Dissemination Plan
 - Internal and external communication
- Dissemination of Results
 - Including final conference
 - In-Time Forum
- Business Plan & Roll out strategy
 - Value chain analysis
 - Business models
 - Roll Out Strategy

Contact Information

Martin Böhm Gerald Lamprecht

AustriaTech

Gesellschaft des Bundes für technologiepolitische Maßnahmen GmbH Federal Agency for Technological Measures Ltd.

Email: martin.boehm@austriatech.org gerald.lamprecht@austriatech.org

www.austriatech.org

www.in-time-project.eu

